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Defining Modal Logic over Semilattices

Definition (language and semantics)
The language is given by

φ ::= ⊥ | p | ¬φ | φ ∨ ψ | ⟨sup⟩φψ,

and the semantics of ‘⟨sup⟩’ is:

w ⊩ ⟨sup⟩φψ iff ∃u, v(u ⊩ φ; v ⊩ ψ;
w = sup{u, v})

Example

w ⊩ ⟨sup⟩pq

u ⊩ p v ⊩ q

Definition (frames and logic)
• A semilattice frame is a pair (W,≤), whereW is a set and ≤ is a
join-semilattice onW (i.e., re., tr., anti-symm. and w. all binary joins).

• The modal logic over semilattices is denoted MILSem and defined as

MILSem := {φ ∈ LM | φ is valid on all semilattice frames (W,≤)}.

Main concern of this talk: Axiomatizing this logic.
3
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Why semilattices?
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Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022),
van Benthem and Bezhanishvili (2022), respectively]

2. Informational interpretation (hence the ‘I’ in ‘MILSem’):
• Preorder and poset versions, MILPre and MILPos, introduced by
van Benthem (1996)

• Knudstorp (Forthcoming) proves that the modal information logics
over preorders and posets coincide, are decidable and finitely
axiomatizable

3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for
(modal) completeness proofs; I hope to effectively communicate these ideas.
Instead of presenting the completed proof as is, I’ll go through the process

of coming up with the proof/axiomatization.
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Starting point for axiomatizing MILSem

Axiomatization of MILPre [Knudstorp (Forthcoming)]
MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → ⟨sup⟩pq
(4) PPp→ Pp

(Co.) ⟨sup⟩pq → ⟨sup⟩qp
(Dk.) (p ∧ ⟨sup⟩qr) → ⟨sup⟩pq

• Initial thought: Since MILPre = MILPos, could it be that even
MILPre = MILPos = MILSem? No, as witnessed by

(As.) ⟨sup⟩(⟨sup⟩pq)r ↔ ⟨sup⟩p(⟨sup⟩qr).

• First conclusion: We must supplement with additional axioms.
• Method for finding axioms: We assume we have some MCS Γ0 and work
out what axioms are needed to construct a satisfying semilattice model.

• How to construct the satisfying model?
• Will the canonical model do? No, not even close
• How about step-by-step? Perhaps, let’s try!
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Step-by-step: idea

Step-by-step procedure:

(Base) Define singleton semilattice frame F0 := ({{∗}}, {({∗}, {∗})}) and
‘label’ it with our MCS: l0({∗}) = Γ0.

(Ind.) Step-wise construct (Fn+1, ln+1) from (Fn, ln).
The goal being to prove a ‘truth lemma’ s.t. (after all finite steps)

(Fω, V ), {∗} ⊩ φ ⇔ φ ∈ lω({∗}) = Γ0.

This achieves the reduction:

Axiomatizing MILSem ⇝ Finding (sound) axioms enabling this
construction.

7



Step-by-step: idea

Step-by-step procedure:

(Base) Define singleton semilattice frame F0 := ({{∗}}, {({∗}, {∗})}) and
‘label’ it with our MCS: l0({∗}) = Γ0.

(Ind.) Step-wise construct (Fn+1, ln+1) from (Fn, ln).
The goal being to prove a ‘truth lemma’ s.t. (after all finite steps)

(Fω, V ), {∗} ⊩ φ ⇔ φ ∈ lω({∗}) = Γ0.

This achieves the reduction:

Axiomatizing MILSem ⇝ Finding (sound) axioms enabling this
construction.

7



Step-by-step: idea

Step-by-step procedure:

(Base) Define singleton semilattice frame F0 := ({{∗}}, {({∗}, {∗})}) and
‘label’ it with our MCS: l0({∗}) = Γ0.

(Ind.) Step-wise construct (Fn+1, ln+1) from (Fn, ln).
The goal being to prove a ‘truth lemma’ s.t. (after all finite steps)

(Fω, V ), {∗} ⊩ φ ⇔ φ ∈ lω({∗}) = Γ0.

This achieves the reduction:

Axiomatizing MILSem ⇝ Finding (sound) axioms enabling this
construction.

7



Step-by-step: idea

Step-by-step procedure:

(Base) Define singleton semilattice frame F0 := ({{∗}}, {({∗}, {∗})}) and
‘label’ it with our MCS: l0({∗}) = Γ0.

(Ind.) Step-wise construct (Fn+1, ln+1) from (Fn, ln).
The goal being to prove a ‘truth lemma’ s.t. (after all finite steps)

(Fω, V ), {∗} ⊩ φ ⇔ φ ∈ lω({∗}) = Γ0.

This achieves the reduction:

Axiomatizing MILSem ⇝ Finding (sound) axioms enabling this
construction.

7



Step-by-step: obstacle 1

• Suppose {⟨sup⟩φ0φ′
0, ⟨sup⟩φ1φ′

1} ⊆ l({∗}) = Γ0. Then add points
{φ0}, {φ′

0}, {φ1}, {φ′
1}, and label them using the existence lemma (EL) s.t.

φ0 ∈ l({φ0}), etc.
• Problem: Now {∗} = sup{{φ′

0}, {φ′
1}}, but we need not have

l({∗})RSeml({φ′
0})l({φ′

1}), where ‘RSem’ is ternary relation of can. model.
• Solution: Add axiom π1 ∈ MILSem enabling us to add a point, {φ′

0,φ
′
1}, and

label it s.t.

l({φ′
0,φ

′
1})RSeml({φ′

0})l({φ′
1}) and l({∗})RSeml({φ0})l({φ′

0,φ
′
1}), etc.

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

⇝

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

{φ′
0,φ

′
1}

Obs: M, w ⊩ ⟨sup⟩φ0φ′
0 ∧ ⟨sup⟩φ1φ′

1 ̸⇒ sub-semilattice is isomorphic to RHS,
butM, w ⊩ ⟨sup⟩φ0φ′

0 ∧ ⟨sup⟩φ1φ′
1 ⇒ sub-semilattice is hom. im. of RHS. 8
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1}}, but we need not have

l({∗})RSeml({φ′
0})l({φ′

1}), where ‘RSem’ is ternary relation of can. model.
• Solution: Add axiom π1 ∈ MILSem enabling us to add a point, {φ′

0,φ
′
1}, and

label it s.t.

l({φ′
0,φ

′
1})RSeml({φ′

0})l({φ′
1}) and l({∗})RSeml({φ0})l({φ′

0,φ
′
1}), etc.

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

⇝

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

{φ′
0,φ

′
1}

Obs: M, w ⊩ ⟨sup⟩φ0φ′
0 ∧ ⟨sup⟩φ1φ′

1 ̸⇒ sub-semilattice is isomorphic to RHS,
butM, w ⊩ ⟨sup⟩φ0φ′

0 ∧ ⟨sup⟩φ1φ′
1 ⇒ sub-semilattice is hom. im. of RHS. 8



Step-by-step: obstacle 2

Takeaway:

• Axioms, like π1, are implications β → α encoding:
M, w ⊩ β ⇒ ‘witnessing sub-semilattice’ is hom. im. of a certain other

semilattice freely generated modulo some requirements.

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

⇝

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

{φ′
0,φ

′
1}

• Now suppose that ⟨sup⟩ψψ′ ∈ l({φ0}).
• Problem: adding {ψ}, {ψ′} and labeling using EL for l({φ0}) does not work:
then {∗} = sup{{ψ′}, {φ′

0}} but maybe not l({∗})RSeml({ψ′})l({φ′
0}).

• Solution: Adding axiom π2 ∈ MILSem of greater ‘depth’, and use EL for l({∗}).
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Step-by-step: obstacle 3

Takeaways:

• To achieve the truth lemma, we need formulas π1, π2, . . . of incr. depth;
• and π1, π2, . . . must be constructed so that they can be evaluated at
the same MCS l({∗}) = Γ0.

Problem: Having labeled, e.g., {φ0} via evaluating the formula π1 at Γ0, we
then relabel {φ0} via evaluating π2 at Γ0. How do we ascertain that
l2({φ0}) = l1({φ0})?

Observation: While an MCS Θ is equivalently defined as an infinite
conjunction Θ̂, a finite set of formulas ΘF is equivalently defined as a
finite conjunction Θ̂F .

Solution:

• Aim for weak completeness instead: Extend consistent formula φ to
the least subformula-closed set Φ ∋ φ.

• Instead of labeling with MCSs Θ, we label with (Θ ∩ Φ). This labeling
can be coded into the formulas π1, π2, . . . to ensure ln(x) = ln+1(x).
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Step-by-step: obstacle 4

Problem: How can πi determine what Φ-formulas the witnessing worlds
are to satisfy and yet be sound: that, say, some w ⊩ ⟨sup⟩φ0φ

′
0 does not

determine what Φ-formulas the φ0- and φ′
0-world satisfy.

Recall: “Axioms, like π1, are implications β → α encoding:

M, w ⊩ β ⇒ ‘witnessing sub-semilattice’ is hom. im. of a certain other

semilattice freely generated modulo some requirements.”

Solution: “Axioms, like π1, are implications β → α [β →
∨
α] encoding:

M, w ⊩ β ⇒ ‘witnessing sub-semilattice’ is hom. im. of a certain other

[one of the] semilattice[s] freely generated modulo some

requirements [depending on the given disjunct,

and where ‘
∨
’ quantifies over all possible ‘Φ-names’]”
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Failure of (deterministic) step-by-step

Final problem: If the consequents of the formulas π1, π2, . . . consist
of disjunctions defining distinct semilattices, which disjunct shall
we choose when stepwise extending our semilattice as to satisfy
the truth lemma?

Back to ‘how to construct the satisfying semilattice model?’

• Will the canonical model do? 7

• Will ‘deterministic’ step-by-step do? 7

• How about ‘indeterministic’ step-by-step?
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Success of (indeterministic) step-by-step

Three ways to completeness:

Henkin (e.g.,K)

M

Standard step-by-step (e.g., MILPre)

M0 M1 M2

· · ·
Mω

‘Indeterministic step-by-step’ (MILSem)

M0

M01

...
...

M0n0

M011...
...
M01n01

M0n01...
...
M0n0n0n0

· · ·

· · ·

· · ·

· · ·

· · ·π0 π1 π2

Model constr.:

Axioms:
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This completes our informal walk-through of
the ideas going into the axiomatization
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Conclusion

Summary and main themes:

• We went through the process of coming up with an
axiomatization of MILSem.

• Our axiomatization employed an infinite extension scheme.
• This is a contrast to MILPre = MILPos;
• and to truthmaker semantics [cf. Fine and Jago (2019)]

• Two selected take-homes:
• Going for weak completeness facilitates ‘naming’ via finiteness
• Indeterministic step-by-step when standard step-by-step fails

Open problems and further research:

• Proving (un)decidability of MILSem.
• Applying these techniques of this talk in other settings.
• Getting clear on why there is this explosion in complexity from
posets to semilattices; and from adding classical negation to
truthmaker semantics.
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Thank you!
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