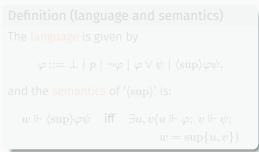
Axiomatizing Modal Logic over Semilattices

Søren Brinck Knudstorp Extract from MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili

September 11, 2023

Universiteit van Amsterdam

- Introduction and motivation
- Informal presentation of key ideas going into the axiomatization
- Conclusion



Definition (frames and logic)

- A semilattice frame is a pair (W, ≤), where W is a set and ≤ is a
 join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- \cdot The modal logic over semilattices is denoted $\mathit{MIL}_{\mathit{Sem}}$ and defined as

 $\mathsf{MIL}_{\mathsf{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$

The <mark>language</mark> is given by

```
\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \sup \rangle \varphi \psi,
```

and the semantics of ' $\langle \sup \rangle$ ' is:

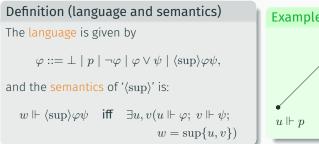
```
 \begin{split} w \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists u, v(u \Vdash \varphi; \ v \Vdash \psi; \\ w = \sup\{u, v\}) \end{split}
```

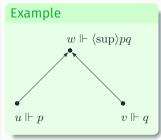


Definition (frames and logic)

- A semilattice frame is a pair (W, ≤), where W is a set and ≤ is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- \cdot The modal logic over semilattices is denoted $\mathit{MIL}_{\mathit{Sem}}$ and defined as

 $\mathsf{MIL}_{\mathsf{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$





Definition (frames and logic)

- A semilattice frame is a pair (W, ≤), where W is a set and ≤ is a
 join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- The modal logic over semilattices is denoted *MILsem* and defined as

 $\mathsf{MIL}_{\mathsf{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$

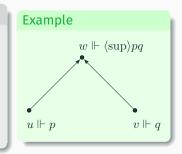
Definition (language and semantics)

The language is given by

 $\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \sup \rangle \varphi \psi,$

and the semantics of ' $\langle \sup \rangle '$ is:

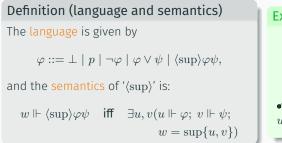
$$\begin{split} w \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists u, v(u \Vdash \varphi; \ v \Vdash \psi; \\ w = \sup\{u, v\}) \end{split}$$

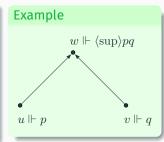


Definition (frames and logic)

- A semilattice frame is a pair (W, \leq) , where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- \cdot The modal logic over semilattices is denoted $\mathit{MIL}_{\mathit{Sem}}$ and defined as

 $\mathsf{MIL}_{\mathsf{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$

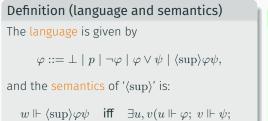


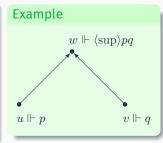


Definition (frames and logic)

- A semilattice frame is a pair (W, \leq) , where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- \cdot The modal logic over semilattices is denoted $\textit{MIL}_{\textit{Sem}}$ and defined as

 $\mathsf{MIL}_{\mathit{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$





Definition (frames and logic)

• A semilattice frame is a pair (W, \leq) , where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).

 $w = \sup\{u, v\})$

 \cdot The modal logic over semilattices is denoted $\textit{MIL}_{\textit{Sem}}$ and defined as

 $\mathsf{MIL}_{\mathit{Sem}} := \{ \varphi \in \mathcal{L}_M \mid \varphi \text{ is valid on all semilattice frames } (W, \leq) \}.$

Why semilattices?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MILsem'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL*_{Pre} and *MIL*_{Pos}, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Why semilattices?

- 1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
- 2. Informational interpretation (hence the 'I' in 'MIL_{Sem}'):
 - Preorder and poset versions, *MIL_{Pre}* and *MIL_{Pos}*, introduced by van Benthem (1996)
 - Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
- 3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- · How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) $p \land q \to \langle \sup \rangle pq$
 - (4) $PPp \rightarrow Pp$
- (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
- (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$
 - Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- · How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- · How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- · How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \to \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - *How about step-by-step?* Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \to \langle \sup \rangle pq$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - *How about step-by-step?* Perhaps, let's try!

Axiomatization of MIL_{Pre} [Knudstorp (Forthcoming)]

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) $p \land q \to \langle \sup \rangle pq$
 - (4) $PPp \rightarrow Pp$
- (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

• Initial thought: Since *MIL*_{Pre} = *MIL*_{Pos}, could it be that even *MIL*_{Pre} = *MIL*_{Pos} = *MIL*_{Sem}? No, as witnessed by

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_0 and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
 - Will the canonical model do? No, not even close
 - How about step-by-step? Perhaps, let's try!

(Base) Define singleton semilattice frame $\mathbb{F}_0 := (\{\{*\}\}, \{(\{*\}, \{*\})\})$ and 'label' it with our MCS: $l_0(\{*\}) = \Gamma_0$.

(Ind.) Step-wise construct $(\mathbb{F}_{n+1}, l_{n+1})$ from (\mathbb{F}_n, l_n) . The goal being to prove a 'truth lemma' s.t. (after all finite steps)

$$(\mathbb{F}_{\omega}, V), \{*\} \Vdash \varphi \quad \Leftrightarrow \quad \varphi \in l_{\omega}(\{*\}) = \Gamma_0.$$

This achieves the reduction:

Axiomatizing MIL_{Sem} \rightsquigarrow Finding (sound) axioms enabling this construction.

(Base) Define singleton semilattice frame $\mathbb{F}_0 := (\{\{*\}\}, \{(\{*\}, \{*\})\})$ and 'label' it with our MCS: $l_0(\{*\}) = \Gamma_0$.

(Ind.) Step-wise construct $(\mathbb{F}_{n+1}, l_{n+1})$ from (\mathbb{F}_n, l_n) . The goal being to prove a 'truth lemma' s.t. (after all finite steps)

$$(\mathbb{F}_{\omega}, V), \{*\} \Vdash \varphi \quad \Leftrightarrow \quad \varphi \in l_{\omega}(\{*\}) = \Gamma_0.$$

This achieves the reduction:

Axiomatizing MIL_{Sem} \rightsquigarrow Finding (sound) axioms enabling this construction.

- (Base) Define singleton semilattice frame $\mathbb{F}_0 := (\{\{*\}\}, \{(\{*\}, \{*\})\})$ and 'label' it with our MCS: $l_0(\{*\}) = \Gamma_0$.
- (Ind.) Step-wise construct $(\mathbb{F}_{n+1}, l_{n+1})$ from (\mathbb{F}_n, l_n) . The goal being to prove a 'truth lemma' s.t. (after all finite steps)

$$(\mathbb{F}_{\omega},V),\{*\}\Vdash\varphi\quad\Leftrightarrow\quad\varphi\in l_{\omega}(\{*\})=\Gamma_0.$$

This achieves the reduction:

Axiomatizing MIL_{Sem} \rightsquigarrow Finding (sound) axioms enabling this construction.

- (Base) Define singleton semilattice frame $\mathbb{F}_0 := (\{\{*\}\}, \{(\{*\}, \{*\})\})$ and 'label' it with our MCS: $l_0(\{*\}) = \Gamma_0$.
- (Ind.) Step-wise construct $(\mathbb{F}_{n+1}, l_{n+1})$ from (\mathbb{F}_n, l_n) . The goal being to prove a 'truth lemma' s.t. (after all finite steps)

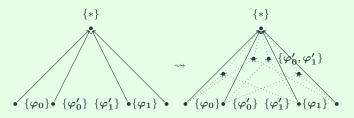
$$(\mathbb{F}_{\omega}, V), \{*\} \Vdash \varphi \quad \Leftrightarrow \quad \varphi \in l_{\omega}(\{*\}) = \Gamma_0.$$

This achieves the reduction:

Axiomatizing MIL_{sem} \rightsquigarrow Finding (sound) axioms enabling this construction.

- Suppose $\{\langle \sup \rangle \varphi_0 \varphi'_0, \langle \sup \rangle \varphi_1 \varphi'_1 \} \subseteq l(\{*\}) = \Gamma_0$. Then add points $\{\varphi_0\}, \{\varphi'_0\}, \{\varphi'_1\}, \{\varphi'_1\}$, and label them using the existence lemma (EL) s.t. $\varphi_0 \in l(\{\varphi_0\})$, etc.
- Problem: Now $\{*\} = \sup\{\{\varphi'_0\}, \{\varphi'_1\}\}$, but we need not have $l(\{*\})R_{\mathbf{Sem}}l(\{\varphi'_0\})l(\{\varphi'_1\})$, where ' $R_{\mathbf{Sem}}$ ' is ternary relation of can. model.
- Solution: Add axiom $\pi_1 \in MIL_{Sem}$ enabling us to add a point, $\{\varphi'_0, \varphi'_1\}$, and label it s.t.

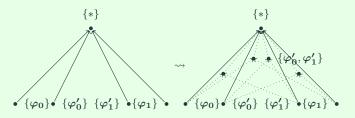
 $l(\{\varphi'_0, \varphi'_1\})R_{Sem}l(\{\varphi'_0\})l(\{\varphi'_1\})$ and $l(\{*\})R_{Sem}l(\{\varphi_0\})l(\{\varphi'_0, \varphi'_1\})$, etc.



Obs: $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1$ but $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1 =$

- Suppose $\{\langle \sup \rangle \varphi_0 \varphi'_0, \langle \sup \rangle \varphi_1 \varphi'_1 \} \subseteq l(\{*\}) = \Gamma_0$. Then add points $\{\varphi_0\}, \{\varphi'_0\}, \{\varphi'_1\}, \{\varphi'_1\}, and label them using the existence lemma (EL) s.t. <math>\varphi_0 \in l(\{\varphi_0\})$, etc.
- Problem: Now $\{*\} = \sup\{\{\varphi'_0\}, \{\varphi'_1\}\}$, but we need not have $l(\{*\})R_{Sem}l(\{\varphi'_0\})l(\{\varphi'_1\})$, where ' R_{Sem} ' is ternary relation of can. model.
- Solution: Add axiom $\pi_1 \in MlL_{Sem}$ enabling us to add a point, $\{\varphi_0', \varphi_1'\}$, and label it s.t.

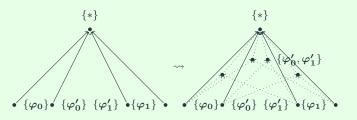
 $l(\{\varphi'_0, \varphi'_1\})R_{Sem}l(\{\varphi'_0\})l(\{\varphi'_1\})$ and $l(\{*\})R_{Sem}l(\{\varphi_0\})l(\{\varphi'_0, \varphi'_1\})$, etc.



Obs: $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1$ but $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1 =$

- Suppose $\{\langle \sup \rangle \varphi_0 \varphi'_0, \langle \sup \rangle \varphi_1 \varphi'_1 \} \subseteq l(\{*\}) = \Gamma_0$. Then add points $\{\varphi_0\}, \{\varphi'_0\}, \{\varphi'_1\}, \{\varphi'_1\}$, and label them using the existence lemma (EL) s.t. $\varphi_0 \in l(\{\varphi_0\})$, etc.
- Problem: Now $\{*\} = \sup\{\{\varphi'_0\}, \{\varphi'_1\}\}$, but we need not have $l(\{*\})R_{Sem}l(\{\varphi'_0\})l(\{\varphi'_1\})$, where ' R_{Sem} ' is ternary relation of can. model.
- Solution: Add axiom $\pi_1 \in MIL_{Sem}$ enabling us to add a point, $\{\varphi_0', \varphi_1'\}$, and label it s.t.

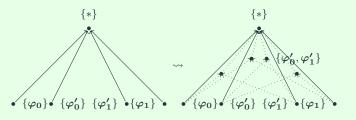
 $l(\{\varphi_0',\varphi_1'\})R_{\mathbf{Sem}}l(\{\varphi_0'\})l(\{\varphi_1'\}) \quad and \quad l(\{*\})R_{\mathbf{Sem}}l(\{\varphi_0\})l(\{\varphi_0',\varphi_1'\}), \text{ etc.}$



Obs: $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1$ but $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1 =$

- Suppose $\{\langle \sup \rangle \varphi_0 \varphi'_0, \langle \sup \rangle \varphi_1 \varphi'_1 \} \subseteq l(\{*\}) = \Gamma_0$. Then add points $\{\varphi_0\}, \{\varphi'_0\}, \{\varphi'_1\}, \{\varphi'_1\}, and label them using the existence lemma (EL) s.t. <math>\varphi_0 \in l(\{\varphi_0\})$, etc.
- Problem: Now $\{*\} = \sup\{\{\varphi'_0\}, \{\varphi'_1\}\}$, but we need not have $l(\{*\})R_{Sem}l(\{\varphi'_0\})l(\{\varphi'_1\})$, where ' R_{Sem} ' is ternary relation of can. model.
- Solution: Add axiom $\pi_1 \in MIL_{Sem}$ enabling us to add a point, $\{\varphi_0', \varphi_1'\}$, and label it s.t.

 $l(\{\varphi_0',\varphi_1'\})R_{\mathbf{Sem}}l(\{\varphi_0'\})l(\{\varphi_1'\}) \quad \text{and} \quad l(\{*\})R_{\mathbf{Sem}}l(\{\varphi_0\})l(\{\varphi_0',\varphi_1'\}), \text{ etc.}$



Obs: $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1 \Rightarrow$ but $\mathbb{M}, w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0 \land \langle \sup \rangle \varphi_1 \varphi'_1 \Rightarrow$

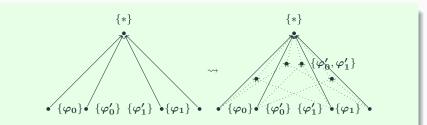
Takeaway:

- Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:
 - $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad \text{`witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.}$

- Now suppose that $\langle \sup \rangle \psi \psi' \in l(\{\varphi_0\}).$
- Problem: adding $\{\psi\}, \{\psi'\}$ and labeling using EL for $l(\{\varphi_0\})$ does not work: then $\{*\} = \sup\{\{\psi'\}, \{\varphi'_0\}\}$ but maybe not $l(\{*\})R_{Sem}l(\{\psi'\})l(\{\varphi'_0\})$.
- Solution: Adding axiom $\pi_2 \in MIL_{Sem}$ of greater 'depth', and use EL for $l(\{*\})$.

Takeaway:

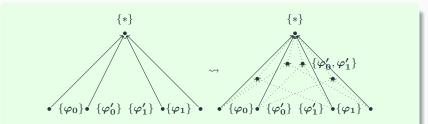
- Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:
 - $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad \text{`witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.}$



- Now suppose that $\langle \sup \rangle \psi \psi' \in l(\{\varphi_0\}).$
- Problem: adding $\{\psi\}, \{\psi'\}$ and labeling using EL for $l(\{\varphi_0\})$ does not work: then $\{*\} = \sup\{\{\psi'\}, \{\varphi'_0\}\}$ but maybe not $l(\{*\})R_{Sem}l(\{\psi'\})l(\{\varphi'_0\})$.
- Solution: Adding axiom $\pi_2 \in MIL_{Sem}$ of greater 'depth', and use EL for $l(\{*\})$

Takeaway:

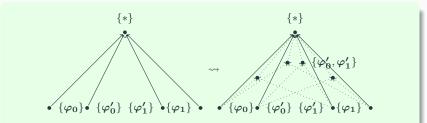
- Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:
 - $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad \text{`witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.}$



- Now suppose that $\langle \sup \rangle \psi \psi' \in l(\{ \varphi_0 \}).$
- Problem: adding $\{\psi\}, \{\psi'\}$ and labeling using EL for $l(\{\varphi_0\})$ does not work: then $\{*\} = \sup\{\{\psi'\}, \{\varphi'_0\}\}$ but maybe not $l(\{*\})R_{Sem}l(\{\psi'\})l(\{\varphi'_0\})$.
- Solution: Adding axiom $\pi_2 \in MIL_{Sem}$ of greater 'depth', and use EL for $l(\{*\})$

Takeaway:

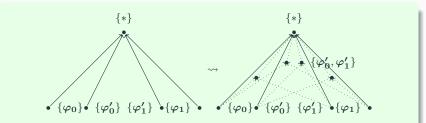
- Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:
 - $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad \text{`witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.}$



- Now suppose that $\langle \sup \rangle \psi \psi' \in l(\{\varphi_0\}).$
- Problem: adding $\{\psi\}, \{\psi'\}$ and labeling using EL for $l(\{\varphi_0\})$ does not work: then $\{*\} = \sup\{\{\psi'\}, \{\varphi'_0\}\}$ but maybe not $l(\{*\})R_{Sem}l(\{\psi'\})l(\{\varphi'_0\})$.
- Solution: Adding axiom $\pi_2 \in MIL_{Sem}$ of greater 'depth', and use EL for $l(\{*\})$

Takeaway:

- Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:
 - $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad \text{`witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.}$



- Now suppose that $\langle \sup \rangle \psi \psi' \in l(\{\varphi_0\}).$
- Problem: adding $\{\psi\}, \{\psi'\}$ and labeling using EL for $l(\{\varphi_0\})$ does not work: then $\{*\} = \sup\{\{\psi'\}, \{\varphi'_0\}\}$ but maybe not $l(\{*\})R_{Sem}l(\{\psi'\})l(\{\varphi'_0\})$.
- Solution: Adding axiom $\pi_2 \in MIL_{Sem}$ of greater 'depth', and use EL for $l(\{*\})$.

Takeaways:

- To achieve the truth lemma, we need formulas π_1, π_2, \ldots of incr. depth;
- and π_1, π_2, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\}) = \Gamma_0$.

Problem: Having labeled, e.g., $\{\varphi_0\}$ via evaluating the formula π_1 at Γ_0 , we then relabel $\{\varphi_0\}$ via evaluating π_2 at Γ_0 . How do we ascertain that $l_2(\{\varphi_0\}) = l_1(\{\varphi_0\})$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_F is equivalently defined as a finite conjunction $\widehat{\Theta_F}$.

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ , we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_1, π_2, \ldots to ensure $l_n(x) = l_{n+1}(x)$.

Takeaways:

- To achieve the truth lemma, we need formulas π_1, π_2, \ldots of incr. depth;
- and π_1, π_2, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\}) = \Gamma_0$.

Problem: Having labeled, e.g., $\{\varphi_0\}$ via evaluating the formula π_1 at Γ_0 , we then relabel $\{\varphi_0\}$ via evaluating π_2 at Γ_0 . How do we ascertain that $l_2(\{\varphi_0\}) = l_1(\{\varphi_0\})$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_F is equivalently defined as a finite conjunction $\widehat{\Theta_F}$.

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ , we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_1, π_2, \ldots to ensure $l_n(x) = l_{n+1}(x)$.

Takeaways:

- To achieve the truth lemma, we need formulas π_1, π_2, \ldots of incr. depth;
- and π_1, π_2, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\}) = \Gamma_0$.

Problem: Having labeled, e.g., $\{\varphi_0\}$ via evaluating the formula π_1 at Γ_0 , we then relabel $\{\varphi_0\}$ via evaluating π_2 at Γ_0 . How do we ascertain that $l_2(\{\varphi_0\}) = l_1(\{\varphi_0\})$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_F is equivalently defined as a finite conjunction $\widehat{\Theta_F}$.

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ , we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_1, π_2, \ldots to ensure $l_n(x) = l_{n+1}(x)$.

Takeaways:

- To achieve the truth lemma, we need formulas π_1, π_2, \ldots of incr. depth;
- and π_1, π_2, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\}) = \Gamma_0$.

Problem: Having labeled, e.g., $\{\varphi_0\}$ via evaluating the formula π_1 at Γ_0 , we then relabel $\{\varphi_0\}$ via evaluating π_2 at Γ_0 . How do we ascertain that $l_2(\{\varphi_0\}) = l_1(\{\varphi_0\})$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_F is equivalently defined as a finite conjunction $\widehat{\Theta_F}$.

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ , we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_1, π_2, \ldots to ensure $l_n(x) = l_{n+1}(x)$.

Takeaways:

- To achieve the truth lemma, we need formulas π_1, π_2, \ldots of incr. depth;
- and π_1, π_2, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\}) = \Gamma_0$.

Problem: Having labeled, e.g., $\{\varphi_0\}$ via evaluating the formula π_1 at Γ_0 , we then relabel $\{\varphi_0\}$ via evaluating π_2 at Γ_0 . How do we ascertain that $l_2(\{\varphi_0\}) = l_1(\{\varphi_0\})$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_F is equivalently defined as a finite conjunction $\widehat{\Theta_F}$.

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ , we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_1, π_2, \ldots to ensure $l_n(x) = l_{n+1}(x)$.

Problem: How can π_i determine what Φ -formulas the witnessing worlds are to satisfy *and* yet be sound: that, say, some $w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0$ does not determine what Φ -formulas the φ_0 - and φ'_0 -world satisfy.

Recall: "Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is *hom. im.* of a certain other semilattice freely generated modulo some requirements."

Solution: "Axioms, like π_1 , are implications $\beta \to \alpha$ [$\beta \to \bigvee \alpha$] encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is hom. im. of a certain other [one of the] semilattice[s] freely generated modulo some requirements [depending on the given disjunct, and where 'V' quantifies over all possible ' Φ -names']" **Problem:** How can π_i determine what Φ -formulas the witnessing worlds are to satisfy *and* yet be sound: that, say, some $w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0$ does not determine what Φ -formulas the φ_0 - and φ'_0 -world satisfy.

Recall: "Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is *hom. im.* of a certain other semilattice freely generated modulo some requirements."

Solution: "Axioms, like π_1 , are implications $\beta \to \alpha$ [$\beta \to \bigvee \alpha$] encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is hom. im. of a certain other [one of the] semilattice[s] freely generated modulo some requirements [depending on the given disjunct, and where 'V' quantifies over all possible ' Φ -names']" **Problem:** How can π_i determine what Φ -formulas the witnessing worlds are to satisfy *and* yet be sound: that, say, some $w \Vdash \langle \sup \rangle \varphi_0 \varphi'_0$ does not determine what Φ -formulas the φ_0 - and φ'_0 -world satisfy.

Recall: "Axioms, like π_1 , are implications $\beta \rightarrow \alpha$ encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is *hom. im.* of a certain other semilattice freely generated modulo some requirements."

Solution: "Axioms, like π_1 , are implications $\beta \to \alpha$ [$\beta \to \bigvee \alpha$] encoding:

 $\mathbb{M}, w \Vdash \beta \Rightarrow$ 'witnessing sub-semilattice' is *hom. im.* of a certain other [one of the] semilattice[s] freely generated modulo some requirements [depending on the given disjunct, and where 'V' quantifies over all possible ' Φ -names']"

- Will the canonical model do? **X**
- Will 'deterministic' step-by-step do? 🗴
- How about 'indeterministic' step-by-step?

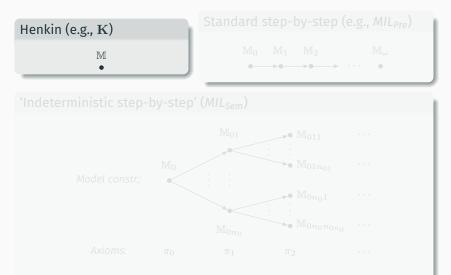
- Will the canonical model do? X
- Will 'deterministic' step-by-step do? 🗴
- How about 'indeterministic' step-by-step?

- Will the canonical model do? X
- Will 'deterministic' step-by-step do? 🗡
- How about 'indeterministic' step-by-step?

- Will the canonical model do? X
- Will 'deterministic' step-by-step do? 🗡
- How about 'indeterministic' step-by-step?

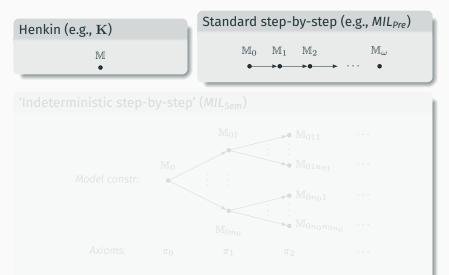
Success of (indeterministic) step-by-step

Three ways to completeness:



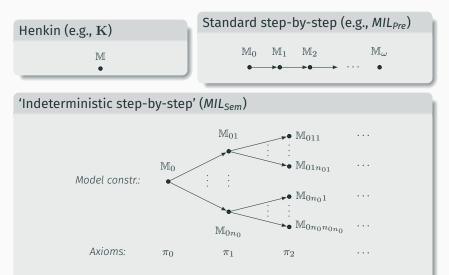
Success of (indeterministic) step-by-step

Three ways to completeness:



Success of (indeterministic) step-by-step

Three ways to completeness:



This completes our informal walk-through of the ideas going into the axiomatization

Summary and main themes:

- We went through the process of coming up with an axiomatization of *MIL_{Sem}*.
- Our axiomatization employed an *infinite* extension scheme.
 - This is a contrast to $MIL_{Pre} = MIL_{Pos}$;
 - and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
 - Going for weak completeness facilitates 'naming' via finiteness
 - Indeterministic step-by-step when standard step-by-step fails

- Proving (un)decidability of *MIL_{Sem}*.
- · Applying these techniques of this talk in other settings.
- Getting clear on *why* there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Summary and main themes:

- We went through the process of coming up with an axiomatization of *MIL_{Sem}*.
- Our axiomatization employed an *infinite* extension scheme.
 - This is a contrast to $MIL_{Pre} = MIL_{Pos}$;
 - and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
 - Going for weak completeness facilitates 'naming' via finiteness
 - · Indeterministic step-by-step when standard step-by-step fails

- Proving (un)decidability of *MIL_{Sem}*.
- · Applying these techniques of this talk in other settings.
- Getting clear on *why* there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Summary and main themes:

- We went through the process of coming up with an axiomatization of *MIL_{Sem}*.
- Our axiomatization employed an *infinite* extension scheme.
 - This is a contrast to *MIL*_{Pre} = *MIL*_{Pos};
 - and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
 - Going for weak completeness facilitates 'naming' via finiteness
 - Indeterministic step-by-step when standard step-by-step fails

- Proving (un)decidability of *MIL_{Sem}*.
- · Applying these techniques of this talk in other settings.
- Getting clear on *why* there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Summary and main themes:

- We went through the process of coming up with an axiomatization of *MIL_{Sem}*.
- Our axiomatization employed an *infinite* extension scheme.
 - This is a contrast to $MIL_{Pre} = MIL_{Pos}$;
 - and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
 - Going for weak completeness facilitates 'naming' via finiteness
 - · Indeterministic step-by-step when standard step-by-step fails

- Proving (un)decidability of MILsem.
- · Applying these techniques of this talk in other settings.
- Getting clear on *why* there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Summary and main themes:

- We went through the process of coming up with an axiomatization of *MIL_{Sem}*.
- Our axiomatization employed an *infinite* extension scheme.
 - This is a contrast to *MIL*_{Pre} = *MIL*_{Pos};
 - and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
 - Going for weak completeness facilitates 'naming' via finiteness
 - · Indeterministic step-by-step when standard step-by-step fails

- Proving (un)decidability of MILsem.
- Applying these techniques of this talk in other settings.
- Getting clear on *why* there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Thank you!

References I

- Fine, K. and M. Jago (2019). "Logic for Exact Entailment". In: The Review of Symbolic Logic 12.3, pp. 536–556. DOI: 10.1017/S1755020318000151.
- Knudstorp, S. B. (Forthcoming). "Modal Information Logics: Axiomatizations and Decidability". In: Journal of Philosophical Logic.
- Van Benthem, J. (1996). "Modal Logic as a Theory of Information". In: Logic and Reality. Essays on the Legacy of Arthur Prior. Ed. by J. Copeland. Clarendon Press, Oxford, pp. 135–168.
- Van Benthem, J. and N. Bezhanishvili (2022). **"Modal Structures in Groups and Vector Spaces".** In.
- Wang, X. and Y. Wang (2022). **"Tense Logics over Lattices".** In: *WoLLIC 2022.*