Axiomatizing Modal Logic Over Semilattices

Søren Brinck Knudstorp
Extract from MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili

September 11, 2023
Universiteit van Amsterdam

Outline of the talk

- Introduction and motivation
- Informal presentation of key ideas going into the axiomatization
- Conclusion

Defining Modal Logic over Semilattices

Definition (language and semantics) is given by
 \square

Definition (frames and logic)

\square ioin-semilattice on W (i.e. re., tr., anti-svmm. and w. all binarv ioins)

- The modal logic over semilattices is denoted MILsem and defined as MIL $L_{\text {sem }}:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi\right.$ is valid on all semilattice frames $\left.(W, \leq)\right\}$.

Main concern of this talk: Axiomatizing this logic.

Defining Modal Logic over Semilattices

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
w \Vdash\langle\sup \rangle \varphi \psi \text { iff } \begin{gathered}
\exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{gathered}
$$

Definition (frames and logic)

A semilattice frame is a pair (W, \leq), where W is a set and \leq is a
join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).

- The modal logic over semilattices is denoted MILsem and defined as MIL $L_{\text {sem }}:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi\right.$ is valid on all semilattice frames $\left.(W, \leq)\right\}$.

Main concern of this talk: Axiomatizing this logic.

Defining Modal Logic over Semilattices

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
w \Vdash\langle\sup \rangle \varphi \psi \text { iff } \begin{gathered}
\exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{gathered}
$$

Example

Definition (frames and logic)

A semilattice frame is a pair $\left(W_{,} \leq\right)$, where W is a set and \leq is a
join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).

- The modal logic over semilattices is denoted MILsem and defined as MIL ${ }_{\text {sem }}:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi\right.$ is valid on all semilattice frames $\left.(W, L)\right\}$.

Main concern of this talk: Axiomatizing this logic.

Defining Modal Logic over Semilattices

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logic)

- A semilattice frame is a pair (W, \leq), where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).

MIL sem $:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi\right.$ is valid on all semilattice frames $\left.(W, \leq)\right\}$

Defining Modal Logic over Semilattices

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logic)

- A semilattice frame is a pair (W, \leq), where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- The modal logic over semilattices is denoted MILsem and defined as

$$
\text { MIL } \text { sem }:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi \text { is valid on all semilattice frames }(W, \leq)\right\} .
$$

Defining Modal Logic over Semilattices

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logic)

- A semilattice frame is a pair (W, \leq), where W is a set and \leq is a join-semilattice on W (i.e., re., tr., anti-symm. and w. all binary joins).
- The modal logic over semilattices is denoted MILsem and defined as

$$
M I L_{\text {sem }}:=\left\{\varphi \in \mathcal{L}_{M} \mid \varphi \text { is valid on all semilattice frames }(W, \leq)\right\}
$$

Main concern of this talk: Axiomatizing this logic.

Why semilattices?

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]

> Preorder and poset versions, $M I L_{\text {pre }}$ and $M I L_{\text {pos, }}$ introduced by van Benthem (1996)
> Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
3. Modal-logic analogue of

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) comnleteness oroofs: I hone to effectivelv communicate these ideas

Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the 'I' in 'MIL Sem ${ }^{\prime}$):

> Preorder and poset versions, MILpre and MILpos, introduced by van Benthem (1996)
> Knudstorp (Forthcomins) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable
3. Modal-logic analogue of

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs: I hode to effectivelv communicate these ideas
Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the ' I ' in ' $M I L_{\text {sem }}$ '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas.
Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the 'I' in 'MIL Sem '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
- Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of

Why axiomatization?
Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas. Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the 'I' in 'MIL Sem '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
- Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas. Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the 'I' in 'MIL Sem '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
- Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of truthmaker semantics

Why axiomatization?
Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas. Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the ' l ' in ' $M I L_{\text {sem }}$ '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
- Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of truthmaker semantics

Why axiomatization?
Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas.
Instead of presenting the completed proof as is, I'll go through the

Motivation and objective

Why semilattices?

1. Lattices and groups were already taken [by Wang and Wang (2022), van Benthem and Bezhanishvili (2022), respectively]
2. Informational interpretation (hence the 'I' in 'MIL sem '):

- Preorder and poset versions, MIL pre and $M I L_{\text {pos }}$, introduced by van Benthem (1996)
- Knudstorp (Forthcoming) proves that the modal information logics over preorders and posets coincide, are decidable and finitely axiomatizable

3. Modal-logic analogue of truthmaker semantics

Why axiomatization?

Proof is tricky, but offers insights and additions to toolbox of techniques for (modal) completeness proofs; I hope to effectively communicate these ideas. Instead of presenting the completed proof as is, I'll go through the process of coming up with the proof/axiomatization.

Starting point for axiomatizing MIL $_{\text {sem }}$

\square
$M I L_{\text {pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

```
n\wedgeq->\langle\operatorname{sun}\ranglenq
PPp}->P
```

$\langle\sup \rangle p q \rightarrow\langle\sup \rangle q p$

Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even
$M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
\text { (As.) }\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

First conclusion: We must supplement with additional axioms.
Method for finding axioms: We assume we have some MCS Γ_{0} ar d work
out what axioms are needed to construct a satisfying semilattice model.
How to construct the satisfying model?
Will the canonical model do? No. no even close
How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {Sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

Initial thought: Since MILpre $=$ MILpos, could it be that even
$M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

First conclusion: We must supplement with additional axioms.
Method for finding axioms: We assume we have some MCS Γ_{0} and work
out what axioms are needed to construct a satisfying semilattice model.
How to construct the satisfying model?
Will the canonical model do? No, not even close
How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {Sem }}$

Axiomatization of MIL $_{\text {Pre }}$ [Knudstorp (Forthcoming)]

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$?

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

First conclusion: We must supplement with additional axioms. Method for finding axioms: We assume we have some MCS Γ_{0} ar work out what axioms are needed to construct a satisfying semilattice model How to construct the satisfying model? Will the canonical model do? No. no even close How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {Sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms:
out what axioms are needed to construct a satisfying semilattice model
How to construct the satisfying model?
Will the canonical model do? No, not even close
How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_{0} and work out what axioms are needed to construct a satisfying semilattice model.
How to construct the satisfying model?
Will the canonical model do? No, not even close
How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_{0} and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
- Will the canonical model do? No, not even close

How about step-by-step? Perhaps, let's try!

Starting point for axiomatizing MIL $_{\text {sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_{0} and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
- Will the canonical model do? No, not even close

Starting point for axiomatizing MIL $_{\text {sem }}$

Axiomatization of MIL Pre $^{\text {[Knudstorp (Forthcoming)] }}$

MIL $L_{\text {Pre }}$ is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

- Initial thought: Since $M I L_{\text {pre }}=M I L_{\text {pos }}$, could it be that even $M I L_{\text {pre }}=M I L_{\text {pos }}=M I L_{\text {sem }}$? No, as witnessed by

$$
(\text { As. })\langle\sup \rangle(\langle\sup \rangle p q) r \leftrightarrow\langle\sup \rangle p(\langle\sup \rangle q r) .
$$

- First conclusion: We must supplement with additional axioms.
- Method for finding axioms: We assume we have some MCS Γ_{0} and work out what axioms are needed to construct a satisfying semilattice model.
- How to construct the satisfying model?
- Will the canonical model do? No, not even close
- How about step-by-step? Perhaps, let's try!

Step-by-step: idea

Step-by-step procedure:
(Base) Define singleton semilattice frame $\mathbb{F}_{0}:=(\{\{*\}\},\{(\{*\},\{*\})\})$ and 'label' it with our MCS: $l_{0}(\{*\})=\Gamma_{0}$.

This achieves the reduction:

Axiomatizing $M I L_{\text {sem }}$

Step-by-step: idea

Step-by-step procedure:
(Base) Define singleton semilattice frame $\mathbb{F}_{0}:=(\{\{*\}\},\{(\{*\},\{*\})\})$ and 'label' it with our MCS: $l_{0}(\{*\})=\Gamma_{0}$.

This achieves the reduction:

Axiomatizing MILsem

Step-by-step: idea

Step-by-step procedure:
(Base) Define singleton semilattice frame $\mathbb{F}_{0}:=(\{\{*\}\},\{(\{*\},\{*\})\})$ and 'label' it with our MCS: $l_{0}(\{*\})=\Gamma_{0}$.
(Ind.) Step-wise construct $\left(\mathbb{F}_{n+1}, l_{n+1}\right)$ from $\left(\mathbb{F}_{n}, l_{n}\right)$.
The goal being to prove a 'truth lemma' s.t. (after all finite steps)

$$
\left(\mathbb{F}_{\omega}, V\right),\{*\} \Vdash \varphi \quad \Leftrightarrow \quad \varphi \in l_{\omega}(\{*\})=\Gamma_{0}
$$

This achieves the reduction:

Axiomatizing MILsem $_{\text {sem }} \rightsquigarrow F$

Step-by-step: idea

Step-by-step procedure:
(Base) Define singleton semilattice frame $\mathbb{F}_{0}:=(\{\{*\}\},\{(\{*\},\{*\})\})$ and 'label' it with our MCS: $l_{0}(\{*\})=\Gamma_{0}$.
(Ind.) Step-wise construct $\left(\mathbb{F}_{n+1}, l_{n+1}\right)$ from $\left(\mathbb{F}_{n}, l_{n}\right)$. The goal being to prove a 'truth lemma' s.t. (after all finite steps)

$$
\left(\mathbb{F}_{\omega}, V\right),\{*\} \Vdash \varphi \quad \Leftrightarrow \quad \varphi \in l_{\omega}(\{*\})=\Gamma_{0} .
$$

This achieves the reduction:

$$
\begin{aligned}
\text { Axiomatizing } \text { MIL }_{\text {sem }} \rightsquigarrow & \text { Finding (sound) axioms enabling this } \\
& \text { construction. }
\end{aligned}
$$

Step-by-step: obstacle 1

- Suppose $\left\{\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime},\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime}\right\} \subseteq l(\{*\})=\Gamma_{0}$. Then add points $\left\{\varphi_{0}\right\},\left\{\varphi_{0}^{\prime}\right\},\left\{\varphi_{1}\right\},\left\{\varphi_{1}^{\prime}\right\}$, and label them using the existence lemma (EL) s.t. $\varphi_{0} \in l\left(\left\{\varphi_{0}\right\}\right)$, etc.

```
Problem: Now {*} = sup{{\mp@subsup{\varphi}{0}{\prime}},{\mp@subsup{\varphi}{1}{\prime}}}, but we need not have
l({*})R}\mp@subsup{R}{\mathrm{ Sem}}{}l({\mp@subsup{\varphi}{0}{\prime}})l({\mp@subsup{\varphi}{1}{\prime}}), where ' R Rem ' is ternary relation of can. model.
Solution: Add axiom }\mp@subsup{\pi}{1}{}\in\mathrm{ MILSem enabling us to add a point, { }\mp@subsup{\varphi}{0}{\prime},\mp@subsup{\varphi}{1}{\prime}}\mathrm{ , and
label it s.t.
```


Step-by-step: obstacle 1

- Suppose $\left\{\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime},\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime}\right\} \subseteq l(\{*\})=\Gamma_{0}$. Then add points $\left\{\varphi_{0}\right\},\left\{\varphi_{0}^{\prime}\right\},\left\{\varphi_{1}\right\},\left\{\varphi_{1}^{\prime}\right\}$, and label them using the existence lemma (EL) s.t. $\varphi_{0} \in l\left(\left\{\varphi_{0}\right\}\right)$, etc.
- Problem: Now $\{*\}=\sup \left\{\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\},\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right\}$, but we need not have $l(\{*\}) R_{\text {Sem }} l\left(\left\{\varphi_{0}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right)$, where ' $R_{\text {Sem }}$ ' is ternary relation of can. model. Solution: Add axiom $\pi_{1} \in$ MILsem enabling us to add a point, $\left\{\varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right\}$, and label it s.t.

Step-by-step: obstacle 1

- Suppose $\left\{\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime},\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime}\right\} \subseteq l(\{*\})=\Gamma_{0}$. Then add points $\left\{\varphi_{0}\right\},\left\{\varphi_{0}^{\prime}\right\},\left\{\varphi_{1}\right\},\left\{\varphi_{1}^{\prime}\right\}$, and label them using the existence lemma (EL) s.t. $\varphi_{0} \in l\left(\left\{\varphi_{0}\right\}\right)$, etc.
- Problem: Now $\{*\}=\sup \left\{\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\},\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right\}$, but we need not have $l(\{*\}) R_{\text {Sem }} l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right)$, where ' $R_{\text {Sem }}$ ' is ternary relation of can. model.
- Solution: Add axiom $\pi_{1} \in$ MIL $L_{\text {sem }}$ enabling us to add a point, $\left\{\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\varphi}_{1}^{\prime}\right\}$, and label it s.t.

$$
l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\varphi}_{1}^{\prime}\right\}\right) R_{\text {Sem }} l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right) \quad \text { and } l(\{*\}) R_{\mathbf{S e m}} l\left(\left\{\varphi_{0}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\varphi}_{1}^{\prime}\right\}\right), \text { etc. }
$$

Step-by-step: obstacle 1

- Suppose $\left\{\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime},\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime}\right\} \subseteq l(\{*\})=\Gamma_{0}$. Then add points $\left\{\varphi_{0}\right\},\left\{\varphi_{0}^{\prime}\right\},\left\{\varphi_{1}\right\},\left\{\varphi_{1}^{\prime}\right\}$, and label them using the existence lemma (EL) s.t. $\varphi_{0} \in l\left(\left\{\varphi_{0}\right\}\right)$, etc.
- Problem: Now $\{*\}=\sup \left\{\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\},\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right\}$, but we need not have $l(\{*\}) R_{\text {Sem }} l\left(\left\{\varphi_{0}^{\prime}\right\}\right) l\left(\left\{\varphi_{1}^{\prime}\right\}\right)$, where ' $R_{\text {Sem }}$ ' is ternary relation of can. model.
- Solution: Add axiom $\pi_{1} \in$ MIL $L_{\text {sem }}$ enabling us to add a point, $\left\{\varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right\}$, and label it s.t.

$$
l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\varphi}_{1}^{\prime}\right\}\right) R_{\text {Sem }} l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{1}^{\prime}\right\}\right) \quad \text { and } l(\{*\}) R_{\mathbf{S e m}} l\left(\left\{\varphi_{0}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}, \boldsymbol{\varphi}_{1}^{\prime}\right\}\right), \text { etc. }
$$

Obs: $\mathbb{M}, w \Vdash\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime} \wedge\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime} \nRightarrow \quad$ sub-semilattice is isomorphic to RHS, but $\mathbb{M}, w \Vdash\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime} \wedge\langle\sup \rangle \varphi_{1} \varphi_{1}^{\prime} \Rightarrow$ sub-semilattice is hom. im. of RHS.

Step-by-step: obstacle 2

Takeaway:

- Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.

Now suppose that $\langle\sup \rangle \psi \psi^{\prime} \in l\left(\left\{\varphi_{0}\right\}\right)$.
Problem: adding $\{\boldsymbol{w}\} .\left\{\boldsymbol{\psi}^{\prime}\right\}$ and labeling using EL for $l\left(\left\{\varphi_{0}\right\}\right)$ does not work then $\{*\}=\sup \left\{\left\{\psi^{\prime}\right\},\left\{\varphi_{0}^{\prime}\right\}\right\}$ but maybe not $l(\{*\}) R_{\operatorname{Sem} l\left(\left\{\psi^{\prime}\right\}\right) l\left(\left\{\varphi_{0}^{\prime}\right\}\right) \text {. } \text {. } \text {. }{ }^{\prime} l}$

Step-by-step: obstacle 2

Takeaway:

- Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.

Now suppose that $\langle\sup \rangle \psi \psi^{\prime} \in l\left(\left\{\varphi_{0}\right\}\right)$
Problem: adding $\{\boldsymbol{a}, \boldsymbol{,}\} .\left\{\boldsymbol{a},,^{\prime}\right\}$ and labeling using EL for $l\left(\left\{\varphi_{0}\right\}\right)$ does not work then $\{*\}=\sup \left\{\left\{\psi^{\prime}\right\},\left\{\varphi_{0}^{\prime}\right\}\right\}$ but maybe not $l(\{*\}) R_{\operatorname{sem}} l\left(\left\{\psi^{\prime}\right\}\right) l\left(\left\{\varphi_{0}^{\prime}\right\}\right)$

Step-by-step: obstacle 2

Takeaway:

- Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.

- Now suppose that $\langle\sup \rangle \psi \psi^{\prime} \in l\left(\left\{\boldsymbol{\varphi}_{\mathbf{0}}\right\}\right)$.

Problem: adding $\{\psi\},\left\{\psi^{\prime}\right\}$ and labeling using EL for $l\left(\left\{\varphi_{0}\right\}\right)$ does not work then $\{*\}=\sup \left\{\left\{\psi^{\prime}\right\},\left\{\varphi_{0}^{\prime}\right\}\right\}$ but maybe not $l(\{*\}) R_{\operatorname{Sem}} l\left(\left\{\psi^{\prime}\right\}\right) l\left(\left\{\varphi_{0}^{\prime}\right\}\right)$

Solution. Adding axinm $\pi n \in$ MII sem of oreater 'denth' and lise FI for $1\left(\left\{_{*}\right\}\right)$.

Step-by-step: obstacle 2

Takeaway:

- Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.

- Now suppose that $\langle\sup \rangle \psi \psi^{\prime} \in l\left(\left\{\boldsymbol{\varphi}_{\mathbf{0}}\right\}\right)$.
- Problem: adding $\{\boldsymbol{\psi}\},\left\{\boldsymbol{\psi}^{\prime}\right\}$ and labeling using EL for $l\left(\left\{\varphi_{0}\right\}\right)$ does not work: then $\{*\}=\sup \left\{\left\{\boldsymbol{\psi}^{\prime}\right\},\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right\}$ but maybe not $l(\{*\}) R_{\text {Sem }} l\left(\left\{\boldsymbol{\psi}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right)$.

Step-by-step: obstacle 2

Takeaway:

- Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements.

- Now suppose that $\langle\sup \rangle \psi \psi^{\prime} \in l\left(\left\{\boldsymbol{\varphi}_{\mathbf{0}}\right\}\right)$.
- Problem: adding $\{\boldsymbol{\psi}\},\left\{\boldsymbol{\psi}^{\prime}\right\}$ and labeling using EL for $l\left(\left\{\varphi_{0}\right\}\right)$ does not work: then $\{*\}=\sup \left\{\left\{\boldsymbol{\psi}^{\prime}\right\},\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right\}$ but maybe not $l(\{*\}) R_{\text {Sem }} l\left(\left\{\boldsymbol{\psi}^{\prime}\right\}\right) l\left(\left\{\boldsymbol{\varphi}_{0}^{\prime}\right\}\right)$.
- Solution: Adding axiom $\pi_{2} \in$ MILsem of greater 'depth', and use EL for $l(\{*\})$.

Step-by-step: obstacle 3

Takeaways:

- To achieve the truth lemma, we need formulas π_{1}, π_{2}, \ldots of incr. depth;
- and π_{1}, π_{2}, \ldots must be constructed so that they can be evaluated at the same MCS $l(\{*\})=\Gamma_{0}$.

Problem: Having labeled, e.g., $\left\{\varphi_{0}\right\}$ via evaluating the formula π_{1} at Γ_{0}, we then relabel $\left\{\varphi_{0}\right\}$ via evaluating π_{2} at Γ_{0}. How do we ascertain that $l_{2}\left(\left\{\varphi_{0}\right\}\right)=l_{1}\left(\left\{\varphi_{0}\right\}\right)$?

Observation: While an MCS Θ is equivalently defined as an conjunction Θ, a finite set of formulas Θ_{F} is equivalently defined as a conjunction $\widehat{\Theta_{F}}$

Solution:

Aim for weak completeness instead: Extend consistent formula φ to
the least subformula-closed set $\Phi \ni \varphi$.
Instead of labeling with MCSs Θ, we label with $(\Theta \cap \Phi)$. This Labeling can be coded into the formulas π_{1}, π_{2}, \ldots to ensure $l_{n}(x)=l_{n+1}(x)$.

Step-by-step: obstacle 3

Takeaways:

- To achieve the truth lemma, we need formulas π_{1}, π_{2}, \ldots of incr. depth;
- and π_{1}, π_{2}, \ldots must be constructed so that they can be evaluated at the same $\operatorname{MCS} l(\{*\})=\Gamma_{0}$.

Problem: Having labeled, e.g., $\left\{\varphi_{0}\right\}$ via evaluating the formula π_{1} at Γ_{0}, we then relabel $\left\{\varphi_{0}\right\}$ via evaluating π_{2} at Γ_{0}. How do we ascertain that $l_{2}\left(\left\{\varphi_{0}\right\}\right)=l_{1}\left(\left\{\varphi_{0}\right\}\right)$?

Observation: While an MCS Θ is equivalently defined as an
conjunction $\widehat{\Theta}$, a finite set of formulas Θ_{F} is equivalently defined as a conjunction $\widehat{\Theta_{F}}$

Solution:

Aim for weak completeness instead: Extend consistent formula φ to
the least subformula-closed set $\Phi \ni \varphi$.
Instead of labeling with MCSS Θ, we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_{1}, π_{2}, \ldots to ensure $l_{n}(x)=l_{n+1}(x)$.

Step-by-step: obstacle 3

Takeaways:

- To achieve the truth lemma, we need formulas π_{1}, π_{2}, \ldots of incr. depth;
- and π_{1}, π_{2}, \ldots must be constructed so that they can be evaluated at the same $\operatorname{MCS} l(\{*\})=\Gamma_{0}$.

Problem: Having labeled, e.g., $\left\{\varphi_{0}\right\}$ via evaluating the formula π_{1} at Γ_{0}, we then relabel $\left\{\varphi_{0}\right\}$ via evaluating π_{2} at Γ_{0}. How do we ascertain that $l_{2}\left(\left\{\varphi_{0}\right\}\right)=l_{1}\left(\left\{\varphi_{0}\right\}\right)$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_{F} is equivalently defined as a finite conjunction $\widehat{\Theta_{F}}$.

Solution:
Aim for weak completeness instead: Extend consistent formula φ to
the least subformula-closed set $\Phi \ni \varphi$.
Instead of labeling with MCSs Θ, we label with $(\Theta \cap \Phi)$. This Labeling can be coded into the formulas π_{1}, π_{2}, \ldots to ensure $l_{n}(x)=l_{n+1}(x)$.

Step-by-step: obstacle 3

Takeaways:

- To achieve the truth lemma, we need formulas π_{1}, π_{2}, \ldots of incr. depth;
- and π_{1}, π_{2}, \ldots must be constructed so that they can be evaluated at the same $\operatorname{MCS} l(\{*\})=\Gamma_{0}$.

Problem: Having labeled, e.g., $\left\{\varphi_{0}\right\}$ via evaluating the formula π_{1} at Γ_{0}, we then relabel $\left\{\varphi_{0}\right\}$ via evaluating π_{2} at Γ_{0}. How do we ascertain that $l_{2}\left(\left\{\varphi_{0}\right\}\right)=l_{1}\left(\left\{\varphi_{0}\right\}\right)$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_{F} is equivalently defined as a finite conjunction $\widehat{\Theta_{F}}$.

Solution:

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$. Instead of labeling with MCSs Θ, we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_{1}, π_{2}, \ldots to ensure $l_{n}(x)=l_{n+1}(x)$.

Step-by-step: obstacle 3

Takeaways:

- To achieve the truth lemma, we need formulas π_{1}, π_{2}, \ldots of incr. depth;
- and π_{1}, π_{2}, \ldots must be constructed so that they can be evaluated at the same $\operatorname{MCS} l(\{*\})=\Gamma_{0}$.

Problem: Having labeled, e.g., $\left\{\varphi_{0}\right\}$ via evaluating the formula π_{1} at Γ_{0}, we then relabel $\left\{\varphi_{0}\right\}$ via evaluating π_{2} at Γ_{0}. How do we ascertain that $l_{2}\left(\left\{\varphi_{0}\right\}\right)=l_{1}\left(\left\{\varphi_{0}\right\}\right)$?

Observation: While an MCS Θ is equivalently defined as an infinite conjunction $\widehat{\Theta}$, a finite set of formulas Θ_{F} is equivalently defined as a finite conjunction $\widehat{\Theta_{F}}$.

Solution:

- Aim for weak completeness instead: Extend consistent formula φ to the least subformula-closed set $\Phi \ni \varphi$.
- Instead of labeling with MCSs Θ, we label with $(\Theta \cap \Phi)$. This labeling can be coded into the formulas π_{1}, π_{2}, \ldots to ensure $l_{n}(x)=l_{n+1}(x)$.

Step-by-step: obstacle 4

Problem: How can π_{i} determine what Φ-formulas the witnessing worlds are to satisfy and yet be sound: that, say, some $w \Vdash\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime}$ does not determine what Φ-formulas the φ_{0} - and φ_{0}^{\prime}-world satisfy.

Recall: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow$
'witnessing sub-semilattice' is hom. im. of a certain other
semilattice freely generated modulo some requirements."
Solution: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha[\beta \rightarrow V \alpha]$ encoding:
'witnessing sub-semilattice' is hom im of a-certain othe
[one of the] semilattice[s] freely generated modulo some
requirements [depending on the given disjunct,
and where " V ' quantifies over all nossible 'क-names']"

Step-by-step: obstacle 4

Problem: How can π_{i} determine what Φ-formulas the witnessing worlds are to satisfy and yet be sound: that, say, some $w \Vdash\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime}$ does not determine what Φ-formulas the φ_{0} - and φ_{0}^{\prime}-world satisfy.

Recall: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding:
$\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements."

Solution: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha[\beta \rightarrow \bigvee \alpha]$ encoding: $\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other [one of thel semilattice[s] freely generated modulo some requirements [depending on the given disjunct, and where ' V ' quantifies over all possible ' Φ-names']"

Step-by-step: obstacle 4

Problem: How can π_{i} determine what Φ-formulas the witnessing worlds are to satisfy and yet be sound: that, say, some $w \Vdash\langle\sup \rangle \varphi_{0} \varphi_{0}^{\prime}$ does not determine what Φ-formulas the φ_{0} - and φ_{0}^{\prime}-world satisfy.

Recall: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha$ encoding:
$\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of a certain other semilattice freely generated modulo some requirements."

Solution: "Axioms, like π_{1}, are implications $\beta \rightarrow \alpha[\beta \rightarrow \bigvee \alpha]$ encoding:
$\mathbb{M}, w \Vdash \beta \quad \Rightarrow \quad$ 'witnessing sub-semilattice' is hom. im. of certain other [one of the] semilattice[s] freely generated modulo some requirements [depending on the given disjunct, and where ' V ' quantifies over all possible ' Φ-names']"

Failure of (deterministic) step-by-step

Final problem: If the consequents of the formulas π_{1}, π_{2}, \ldots consist of disjunctions defining distinct semilattices, which disjunct shall we choose when stepwise extending our semilattice as to satisfy the truth lemma?

Back to 'how to construct the satisfying semilattice model?'

- Will the canonical model do? X
- Will 'deterministic' step-by-step do X
- How about 'indeterministic' step-by-step?

Failure of (deterministic) step-by-step

Final problem: If the consequents of the formulas π_{1}, π_{2}, \ldots consist of disjunctions defining distinct semilattices, which disjunct shall we choose when stepwise extending our semilattice as to satisfy the truth lemma?

Back to 'how to construct the satisfying semilattice model?'

- Will the canonical model do? X
- Will 'deterministic' step-by-step do? X
- How about 'indeterministic' step-by-step?

Failure of (deterministic) step-by-step

Final problem: If the consequents of the formulas π_{1}, π_{2}, \ldots consist of disjunctions defining distinct semilattices, which disjunct shall we choose when stepwise extending our semilattice as to satisfy the truth lemma?
Back to 'how to construct the satisfying semilattice model?'

- Will the canonical model do? x
- Will 'deterministic' step-by-step do? X
- How about 'indeterministic' step-by-step?

Failure of (deterministic) step-by-step

Final problem: If the consequents of the formulas π_{1}, π_{2}, \ldots consist of disjunctions defining distinct semilattices, which disjunct shall we choose when stepwise extending our semilattice as to satisfy the truth lemma?
Back to 'how to construct the satisfying semilattice model?'

- Will the canonical model do? X
- Will 'deterministic' step-by-step do? X
- How about 'indeterministic' step-by-step?

Success of (indeterministic) step-by-step

Three ways to completeness:

Henkin (e.g., K) \mathbb{M}
'Indeterministic step-by-step' (MILsem)

Model constr.

Success of (indeterministic) step-by-step

Three ways to completeness:

Henkin (e.g., K)

M
'Indeterministic step-by-step' (MIL sem)

Model constr.
Standard step-by-step (e.g., MIL ${ }_{\text {Pre }}$)

Success of (indeterministic) step-by-step

Three ways to completeness:

Henkin (e.g., K)

M

'Indeterministic step-by-step' (MIL $_{\text {sem }}$)

This completes our informal walk-through of the ideas going into the axiomatization

Conclusion

Summary and main themes:

- We went through the process of coming up with an axiomatization of $M / L_{\text {sem }}$.

Our axiomatization employed an infinite extension scheme. This is a contrast to MIL pre $=$ MIL $L_{\text {pos }}$;
and to truthmaker semantics [cf. Fine and Jago (2019)]
Two selected take-homes:
Going for weak completeness facilitates

Open problems and further research:
Proving (un)decidability of $M I L_{\text {sem }}$
Applying these techniques of this talk in other settings.
Getting clear on why there is this explosion in complexity from
posets to semilattices; and from adding classical negation to truthmaker semantics.

Conclusion

Summary and main themes:

- We went through the process of coming up with an axiomatization of $M / L_{\text {sem }}$.
- Our axiomatization employed an infinite extension scheme.
- This is a contrast to MIL pre $=$ MIL pos ;
and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:

Going for weak completeness facilitates

Open problems and further research:
Proving (un)decidahility of MII som.
Applying these techniques of this talk in other settings.
Getting clear on why there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Conclusion

Summary and main themes:

- We went through the process of coming up with an axiomatization of $M / L_{\text {sem }}$.
- Our axiomatization employed an infinite extension scheme.
- This is a contrast to MIL pre $=$ MIL ppos ;
- and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
. Going for weak completeness facilitates 'naming' via finiteness
. Indeterministic step-by-step when standard step-by-step fails

Open problems and further research:
Droving (un)decidability of MAll sem.
Applying these techniques of this talk in other settings. Getting clear on why there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Conclusion

Summary and main themes:

- We went through the process of coming up with an axiomatization of $M / L_{\text {sem }}$.
- Our axiomatization employed an infinite extension scheme.
- This is a contrast to MIL pre $=$ MIL ppos ;
- and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
- Going for weak completeness facilitates 'naming' via finiteness
- Indeterministic step-by-step when standard step-by-step fails

Open problems and further research:
Proving (un)decidability of MIL Sem.
Applying these techniques of this talk in other settings.
Getting clear on why there is this explosion in complexity from
posets to semilattices; and from adding classical negation to
truthmaker semantics.

Conclusion

Summary and main themes:

- We went through the process of coming up with an axiomatization of $M / L_{\text {sem }}$.
- Our axiomatization employed an infinite extension scheme.
- This is a contrast to MIL $L_{\text {Pre }}=$ MIL $L_{\text {Pos }}$;
- and to truthmaker semantics [cf. Fine and Jago (2019)]
- Two selected take-homes:
- Going for weak completeness facilitates 'naming' via finiteness
- Indeterministic step-by-step when standard step-by-step fails

Open problems and further research:

- Proving (un)decidability of MIL ${ }_{\text {sem }}$.
- Applying these techniques of this talk in other settings.
- Getting clear on why there is this explosion in complexity from posets to semilattices; and from adding classical negation to truthmaker semantics.

Thank you!

References I

Fine，K．and M．Jago（2019）．＂Logic for Exact Entailment＂．In：The Review of Symbolic Logic 12．3，pp．536－556．DOI： 10．1017／S1755020318000151．

Knudstorp，S．B．（Forthcoming）．＂Modal Information Logics： Axiomatizations and Decidability＂．In：Journal of Philosophical Logic．

國 Van Benthem，J．（1996）．＂Modal Logic as a Theory of Information＂．
In：Logic and Reality．Essays on the Legacy of Arthur Prior．Ed．by J．Copeland．Clarendon Press，Oxford，pp．135－168．

屐 Van Benthem，J．and N．Bezhanishvili（2022）．＂Modal Structures in Groups and Vector Spaces＂．In．

目 Wang，X．and Y．Wang（2022）．＂Tense Logics over Lattices＂．In： WoLLIC 2022.

